PAGE
1
VISUAL BASIC LOOPING STRUCTURES

It is generally accepted that there are three main structures in a high level programming language. The first is a series of statements that get executed from first to last in a straight sequence. The second is conditional branching where, based on the outcome of a decision, the program can proceed to execute some statements but not others. The third major structure is the ability to execute a block of code over and over again. The ability to repeat a code block is called looping.

Definite Loop

The word definite means that you are sure of something. In this case it means that you know exactly how many times you want to repeat a block of code. Lets look at a famous example:

The story goes something like this:

"A handsome knight rescues the king's only daughter from a fire breathing dragon. The king of course is filled with gratitude and asks the knight to name any amount of money as his reward. The knight answers: There are 64 squares on a chess board. I want 1 cent on the first square, 2 cents on the second square, 4 cents on the third, 8 cents on the fourth and so on. The king laughed at the suggestion as it seemed the knight was not asking for much. The king then asked the royal programmer to fire up ye olde Visual Basic and calculate just how big a bag of cents he would have to give the knight."

How would the royal programmer create the code?

	Square
	Cents

	1
	1
	1
	20

	2
	2
	2*1
	21

	3
	4
	2*2
	22

	4
	8
	2*2*2
	23

Look closely at the series of numbers above. The numbers in the first column under the Cents heading represent the number that the knight asked for on each square. The next column (under cents) is another way of writing the same thing. The last column takes the same numbers and uses base 2 and increasing exponents to express the same thing again. In other words, all 3 columns under Cents title are exactly the same. Let's look at this last column more closely.

20 = 1
21 = 2
22 = 4
23 = 8

Do you notice that the exponent 0, 1, 2, 3, etc are in a nice, simple sequence. Could we use these numbers to represent the squares on the chess board? We don't need to start counting at 1, we could call the first square number 0. Therefore the second square would be 1, the third 2, etc. If there are 64 squares on the chess board the last square would be number 63 as we started at 0.

2(Square)0 = 1
2(Square)1 = 2
2(Square)2 = 4
2(Square)3 = 8
.
2(Square)63 = ?

So the programmer, after figuring a way to show the relation between squares and cents mathematically starts writing down some code for his program. This is what he writes:

square1amount = 2^0 ' The ^ symbol means "to the power of"
square2amount = 2^1
square3amount = 2^2
.
.
square64amount = 2^63
Total = square1amount + square2amount+ square64amount
Text1 = Total
Obviously we left out a good bit of the code. There would be at least 66 statements, 64 to calculate the number of cents on each of the squares, one statement to get the total (sum) of all the cents and another statement to display the answer in a text box. Surely there MUST be a better way!!!

There is!! We can use a famous BASIC loop structure called the For...Next. Let's see how it works. We will re-write the code for the Knight's reward.

For ChessSquare = 0 to 63
 Total = Total + 2 ^ ChessSquare
Next ChessSquare
Text1 = Total / 100
That's it! Finished! In four statements! And we even display the answer in dollars (we divided the total number of cents by 100).

Let's look closer at the For...Next structure. The general form is as follows:

For Counter = StartValue To EndValue Step Increment
 Statement 1
 Statement 2
 Statement N
Next Counter

Each of the parts of the For...Next loop has a function. Here's what each does:

· For. VB (Visual Basic) keyword. Identifies the start of the definite loop.

· To. VB keyword.
· Counter. This is a variable that is used to store the number which indicates what at what point the definite loop is. Also called the Index. You can give any name to the Counter or Index as long as it isn't a VB (Visual Basic) keyword. The Counter can be a decimal number.

· StartValue. This is the starting point for the Counter. In the last example it was 0. You can use a number or a variable.

· EndValue. This is the finish point for the Counter. In the last example it was 63. You can use a number or a variable.

· Step. VB keyword. The value after Step indicates the amount the loop Counter is increased (or decreased) for each repeat of the loop (one repeat of a loop is called an iteration).

· Increment. This is the amount that the Counter is (increased or decreased) for each iteration of the loop. It can be a number or a variable. There are three important things you need to know about the Increment.

· If the increment is 1 you can leave out the Step keyword and the increment. If it is not included the loop assumes the increment is 1. In the last example there was no Step keyword so the Counter is increased by 1.

· Any other increment besides 1 must be written after the Step keyword.

· If the StartValue is lower than the EndValue, the step increment must be negative. You must always use the Step keyword with a negative increment.

· Next. VB keyword. When the program gets to the Next keyword, the Counter is checked to see if it has reached its end value. If it has the loop ends and the program proceeds to the next statement after the loop. If the Counter has not reached the end value, the Counter is incremented and another repeat or iteration of the statements in the loop is done.

You can see why it is called a definite loop as we definitely know how many times the loop will be repeated. Here are some examples

1. For Counter = 0 to 500 Step 10
 Statement(s)
Next Counter

The counter will start at 0 and increment by 10. eg. 0, 10, 20, 30 etc.

2. For Counter = 1000 to 0 Step -1
 Statement(s)
Next Counter

The counter will start at 1000 and increment by -1. eg. 1000, 999, 998 etc.

3. For Counter = 1 to 10000000
Next Counter

Look closely. There are no statement between the For...Next keywords. Would this loop work and why would you use it? The loop would definitely work (pardon the pun). What if you had 2 statements that you wanted a short delay between. Consider the following:

Text1 = "Hello"
For Counter = 1 to 10000000
Next Counter
Text1 = "World"

The first list displays Hello in the text box. When the program moves to the next line, it will start a loop and will cycle between For and Next until the Counter gets to 1000000. Then it will move to the last line and display World in the text box. Without the time delay the computer would display Hello and then World so rapidly that you would never see Hello. It seems that 1000000 is a large number, but the computer is so fast the delay is only a second or two. By changing the number, you can change the time it takes to count to the end value. So, you can use the For...Next loop like a person playing hide and seek. By counting you can delay. Sometimes, when there are no statements, you might see this written as:

For Counter = 1 To 10000: Next Counter

The colon (:) allows two statements on the same line.

Conditional Loop

As the name implies, a conditional loop involves repeating a block of statements until a specified condition is met (becomes True). Unlike the definite loop, you don't know how many times the loop will be repeated (the number of iterations).

To illustrate how a conditional loop works and introduce some new keywords let's look at a couple of examples.

Example 1

Entering a password is a familiar activity to anyone who uses a computer. Consider a simple program with just one command button. The program asks for the user to type a secret word. If the word matches, a message is displayed. If it doesn't match, the user must try again. We will use an Input Box to type the word and a Message Box to display a response if you are successful. These are not controls in the normal sense but are very useful for inputting data and displaying messages.

SecretWord = "saturday"

Do
 Word = InputBox("Enter the Secret Password and click OK")
Loop Until Word = SecretWord
MsgBox "Right ON! Awesome!"
Let's look more closely at how this all works. The keywords Do and Loop set the limits of the loop. Any statements between these 2 words will be executed over and over again. There has to be a way of stopping the loop and getting to any statements after it. This is where the condition is applied. The keyword Until is used to set the condition, which is word = SecretWord. The loop will continue to repeat until this condition is true. In fact there are three other variations of the Do..Loop structure that can be used. Consider the following (we will just show the 3 statements that make up the loop):

Do Until Word = SecretWord
 Word = InputBox("Enter the Secret Password and click OK")
Loop
Do
 Word = InputBox("Enter the Secret Password and click OK")
Loop While Word <> SecretWord
Do While Word <> SecretWord
 Word = InputBox("Enter the Secret Password and click OK")
Loop
The <> symbol means not equal to. Are there any differences in the four variations besides the use of the While keyword in the last two? We will answer that later.

Example 2

Let's look at another example. This one has to do with making some simple calculations while in a loop.

Ralph, right out of high school, gets a job on a crab boat and starts off at an annual salary of $45,000. His sister Nardine, having done an Integrated Systems course in high school, goes to the Marine Institute and gets a degree in Technology. She then gets a job selling and servicing radars and GPS devices and starts at a salary of $35,000. Ralph gets a small raise of 2% a year, while Nardine, who's in a better union, gets 4% a year. Will Nardine's paycheck ever get larger than Ralph's and if so, when?

We are going to use the names as the variables that are assigned the salaries. We will also use some text boxes to display the salaries and the number of years it will take Nardine to catch up, if she ever does!

Nardine = 35000
Ralph = 45000
Counter = 0

Do
 Nardine = Nardine * 1.04
 Ralph = Ralph * 1.02
 Counter = Counter + 1
Loop Until Nardine > Ralph

Text1 = Ralph
Text2 = Nardine
Text3 = Counter
This is a good example of the three essential parts of a computer program, Input, Process, and Output.

In the first section each of the variables is assigned a starting value which is usually called initializing the variables or simply initialization.

In the main section a loop is setup to increment Nardine's salary by 4%, Ralph's by 2%, and a Counter by 1. The condition to end the loop is that Nardine's salary must be greater than Ralph's.

In the last section the salaries and the number of years (the counter) are displayed. Use the following animation to see how the loop works. tion Example 2 The Conditional loop. Click Play!

Indefinite Loops

An indefinite loop is every programmer's nightmare. Because of a logic error, a condition is never met and the loop continues forever. Here are two examples:

Example 1

Do
 Text1 = "Hello"
Loop

This example is easy to explain. There is no condition therefore the loop never ends. You can "break" the loop by holding the Control (ctrl) key and pressing the Break key (Pause/Break).

Example 2

Do
 Nardine = Nardine * 1.02
 Ralph = Ralph * 1.04
 Counter = Counter + 1
Loop Until Nardine > Ralph
Look closely, we made a mistake and increased Ralph's salary by 4%. Since Ralph started off making more money, Nardine can never catch up. Therefore the condition will never be true and the loop continues indefinitely.

